翻訳と辞書
Words near each other
・ Stieg Persson
・ Stieg Trenter
・ Stiege
・ Stiegel-Coleman House
・ Stieger Lake
・ Stiegler
・ Stieglitz
・ Stieglitz (surname)
・ Stieglitz Lecture
・ Stieglitz Museum of Applied Arts
・ Stieglitz rearrangement
・ Stieler
・ Stielers Handatlas
・ Stielgranate 41
・ Stieller v Porirua City Council
Stieltjes constants
・ Stieltjes matrix
・ Stieltjes moment problem
・ Stieltjes polynomials
・ Stieltjes transformation
・ Stieltjeskanaal
・ Stieltjeskerk
・ Stieltjes–Wigert polynomials
・ Stien Kaiser
・ Stieng
・ Stieng language
・ Stieng people
・ Stiens
・ Stienta
・ Stientje van Veldhoven


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Stieltjes constants : ウィキペディア英語版
Stieltjes constants

In mathematics, the Stieltjes constants are the numbers \gamma_k that occur in the Laurent series expansion of the Riemann zeta function:
:\zeta(s)=\frac+\sum_^\infty \frac \gamma_n \; (s-1)^n.
The zero'th constant \gamma_0 = \gamma = 0.577\dots is known as the Euler–Mascheroni constant.
==Representations==

The Stieltjes constants are given by the limit
: \gamma_n = \lim_
- \frac\right\}}.
(In the case ''n'' = 0, the first summand requires evaluation of 00, which is taken to be 1.)
Cauchy's differentiation formula leads to the integral representation
:\gamma_n = \frac \int_0^ e^ \zeta\left(e^+1\right) dx.
Various representations in terms of integrals and infinite series are given in works of Jensen, Franel, Hermite, Hardy, Ramanujan, Ainsworth, Howell, Coppo, Connon, Coffey, Choi, Blagouchine and some other authors.〔Marc-Antoine Coppo. ''Nouvelles expressions des constantes de Stieltjes''. Expositiones Mathematicae, vol. 17, pp. 349-358, 1999.〕〔Mark W. Coffey. ''Series representations for the Stieltjes constants'', (arXiv:0905.1111 )〕〔(Mark W. Coffey. ''Addison-type series representation for the Stieltjes constants''. J. Number Theory, vol. 130, pp. 2049-2064, 2010. )〕〔Junesang Choi. ''Certain integral representations of Stieltjes constants'', Journal of Inequalities and Applications, 2013:532, pp. 1-10〕〔〔 In particular, Jensen-Franel's integral formula, often erroneously attributed to Ainsworth and Howell, states that
:
\gamma_n \,=\,\frac\delta_+\,\frac\!\int\limits_0^\infty \! \frac \left\ - \frac
\right\}\,,
\qquad\quad n=0, 1, 2,\ldots

where δ''n,k'' is the Kronecker symbol (Kronecker delta).〔〔 Among other formulae, we find
:
\gamma_n \,=\,-\frac\! \int\limits_^
\frac\pm ix\big)}\, dx
\qquad\qquad\qquad\qquad\qquad\qquad n=0, 1, 2,\ldots


:
\begin
\displaystyle
\gamma_1 =-\left(-\frac\right )\ln2+\,i\!\int\limits_0^\infty \! \frac \left\ - \frac
\right\}\, \\()
\displaystyle
\gamma_1 = -\gamma^2 - \int\limits_0^\infty \left() e^\ln x \, dx
\end

see.〔〔〔(Math StackExchange: A couple of definite integrals related to Stieltjes constants )〕
As concerns series representations, a famous series implying an integer part of a logarithm was given by Hardy in 1912〔G. H. Hardy. ''Note on Dr. Vacca's series for γ'', Q. J. Pure Appl. Math. 43, pp. 215–216, 2012.〕
:
\gamma_1\,=\, \frac\sum_^\infty \frac \,\lfloor \log_2\rfloor\cdot
\big(2\log_2 - \lfloor \log_2\rfloor\big)

Israilov〔M. I. Israilov. ''On the Laurent decomposition of Riemann's zeta function (Russian )''. Trudy Mat. Inst. Akad. Nauk. SSSR, vol. 158, pp. 98-103, 1981.〕 gave semi-convergent series in terms of Bernoulli numbers B_
:
\gamma_m\,=\,\sum_^n \frac - \frac
- \frac - \sum_^ \frac\left()^_ \,,\qquad 0<\theta<1

Connon,〔Donal F. Connon ''Some applications of the Stieltjes constants'', (
arXiv:0901.2083 )〕 Blagouchine〔 and Coppo〔 gave several series with the binomial coefficients
:
\begin
\displaystyle
\gamma_m\,=\,-\frac\sum_^\infty\frac\sum_^n (-1)^k \binom\ln^(k+1) \\()
\displaystyle
\gamma_m\,=\,-\frac\sum_^\infty\frac\sum_^ (-1)^k \binom\frac \\()
\displaystyle
\gamma_m\,=\sum_^\infty\big| G_\big|\sum_^
(-1)^k \binom\frac
\end

where ''G''''n'' are Gregory's coefficients, also known as (reciprocal logarithmic numbers ) (''G''1=+1/2, ''G''2=−1/12, ''G''3=+1/24, ''G''4=−19/720,... ).
Oloa and Tauraso〔(Math StackExchange: A closed form for the series ... )〕 showed that series with harmonic numbers may lead to Stieltjes constants
:
\begin
\displaystyle
\sum_^\infty \frac \,=\,
\,-\gamma_1 -\frac\gamma^2+\frac\pi^2 \\()
\displaystyle
\sum_^\infty \frac \,=\,
\,-\gamma_2 -2\gamma\gamma_1 -\frac\gamma^3+\frac\zeta(3)
\end

Blagouchine〔 obtained slowly-convergent series involving unsigned Stirling numbers of the first kind
\left(\,,\qquad m=0,1,2,...,

as well as semi-convergent series with rational terms only
:
\gamma_m\,
=\,\frac\delta_+(-1)^ m!\cdot\!\sum_^\frac\,}
\,+\, \theta\cdot\frac\right )\cdot B_\,},\qquad 0<\theta<1,

where ''m''=0,1,2,... In particular, series for the first Stieltjes constant has a surprisingly simple form
:
\gamma_1\,
=\,-\frac\sum_^\frac\cdot H_\,}
+\, \theta\cdot\frac\cdot H_\,\,},\qquad 0<\theta<1,

where ''H''_''n'' is the ''n''th harmonic number.〔
More complicated series for Stieltjes constants are given in works of Lehmer, Liang, Todd, Lavrik, Israilov, Stankus, Keiper, Nan-You, Williams, Coffey.〔〔〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Stieltjes constants」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.